
CAEfatigue (CF) is the fastest and
most robust fatigue solution on the
market today.
CAEfatigue is
a random response and vibration fatigue
solver for the frequency domain plus a
fatigue solver for the time domain. It works
with mixed random and deterministic loadings
or standard time domain-based loadings to
provide fatigue life and damage predictions,
as well as several forms of response
statistics. It is exceptionally fast,
easy-to-use and capable of handling very
large models.
The software is sold in 4 different package configurations – Premium, Frequency, Random, and Time. Click the above tabs to learn more about each specific solution.
Democratizing Fatigue Analysis for
the Masses
Response
analysis, fatigue analysis, and the use of a
graphical interface have traditionally
suffered from a lack of democratization;
that is to say, only expert users have been
fully capably of using the technology.
CAEfatigue aims to change this.
Two interfaces to the software are available – a Control File, text-based interface is provided for the advanced Users to help rapidly create an input control file that is needed to run an analysis. Many variables are either used in default mode or are automatically calculated based on an understanding of the system being analyzed.
Also available is a Process Flow graphical-based interface, provided to help novice users quickly gain an understanding of the technology without the need to understand the structured format of the control file interface. The interface is simple and intuitive to use.
Included in Your MSC One Licensing
Package
If you have the MSC
One licensing package, you already have
access to CAEfatigue’s suite of
capabilities. Frequency, Random and Time are
all available via MSC One. Simply download
the software, follow the built-in video
training tutorials, and begin your fatigue
simulation using the same tokens you use for
other MSC Software tools.
Includes a Full Training Library for
New Users
A comprehensive
Technology Transfer package is included
within the HELP menu of the software, which
is directly accessible from within the
software GUI. More than 100 hours of video
training material from beginner level to
advanced level are included along with more
than 100 relevant Test Problems to aid the
User in understanding the technology. We aim
to provide the simplicity desired by the
engineer and designer along with the
functionality and visual graphics found in
many of the post processing packages
available today.
Why choose CF over other frequency domain competitor tools?
allows the analysis to run orders of magnitude faster then 1st generation tools.
allows multiple, correlated input loads for real world simulation.
for users through a simple GUI or operation from a command prompt.
provides information on response stresses, damage and fatigue life results.
makes integration easier for larger companies.
can be evaluated using our running sum technology.
(SINESW) enhancement now supports mixed loading units.
can be provided in many different formats for your analysis.
provides the ability to do more accurate equivalent stress corrections.
provides the ability to do mean stress corrections as part of the analysis.
is a non-linear response statistic output.
analysis can help optimize the design and materials used to save cost and weight.
provides the ability to see a fringe plot of frequency values at peak response.
provides displacement, velocity, acceleration and force output.
allows you to specify repeats of loading Events for Damage Calculations.
allows partial scaling of the Transfer Function for “what if” Damage Calculations.
For general and product specific platform support, please visit our Platform Support page.
Advanced Random Analysis Output
For many automotive and aerospace systems it is required to calculate both durability and to rule out the possibility of collision of individual components during severe base shake vibration conditions. Advanced frequency domain methods now exist to enable the durability assessment and response to be assessed in the same analysis. With the advanced random analysis output, it is possible to output displacement and/or velocity and/or acceleration and/or force RMS levels and Power Spectral Density (PSD) plots for both absolute and relative responses. In addition, a residual sum of the squares (RSS) is calculated to take into account any off axis response. New post processing options allow the relative response from any node to be compared against the actual distance to all nearby nodes in order to check for the probability of collisions (i.e. RATTLE) between adjacent parts. The response maximum is determined using either a ratio of the RMS (e.g. 3.0*rms) from a corresponding level of probability on a Gaussian or Rayleigh distribution, or by using a method which takes into account the number of cycles of response. Advanced Random Analysis output is an excellent addition to predict structural response under complicated loading conditions found in many engineering applications throughout a wide variety of industries.
Calculation of SURROGATE Loading
The specification of loads for durability is a very important topic. Ideally, any loads used in an analysis or in a laboratory-based test procedure, should be as close as possible to the Customers use of the product. In practice, the nearest scenario that can be achieved is to measure multi events and multi-input loads (with correlation) from prototype vehicles (test tracks) and then replay these in the laboratory or analysis environment. For analysis, this is feasible and is a commonly adopted method although it does not easily deal with the topic of test acceleration. For laboratory-based simulation, especially of parts or subsystems, there is a need (usually because of available test equipment) to simplify the loads down to single input load applied one at a time (e.g. X, then Y, then Z), which poses significant challenges. Two common approaches are currently used. First, an enveloping procedure can be applied to the loads where the multiple loads are combined into a single smoothed profile. A classical application of this procedure involves no knowledge of the structural system so there is no assurance that the enveloped loads will cause the same damage values or distribution. Second, is to use the concept of a Fatigue Damage Spectrum (FDS) where a simplified loading is created which does the same damage on a hypothetical 1 DOF system (where the resonance is moved through the loading). Again, this takes no account of the actual structural system or systems. Surrogate Loading provides a NEW approach, which is a variation of the FDS approach but using the actual system properties. The Surrogate Loading tool provides a way to transform a complicated multi-channel, multi-event time history loading into a simplified “SURROGATE LOAD” that will provide a very similar stress and damage output for the system as the complex test time history did.
Calculations at Welds in the Frequency and Time Domains
CAEfatigue has created an industry first! We now provide the ability to conduct a full Spot Weld, Seam Weld and User Defined weld analysis in the Frequency Domain along with the more traditional methods used in the Time Domain. This capability will allow a full automotive vehicle analysis, that includes spot and seam welds, to be conducted with CF in either the Frequency domain or Time domain.
For general and product specific platform support, please visit our Platform Support page.
Base Shake PSD Analysis plus Mean Loads plus Deterministic Loading
CAEfatigue is designed to provide the user with both the random response results and the fatigue results from a structure undergoing loading input from a single random PSD with or without additional loading from deterministic inputs and mean offsets. Response outputs includes mean stress, RMS stress or strain, mean stress plus RMS stress or strain, moments, zero crossings, peaks per second and irregularity factor. Fatigue results including damage, life and margin of safety from a single random input.
The loading inputs needed for CF can come from Optistruct, Nastran, Ansys or Abaqus generated from (virtually) any size model. Examples of inputs are simultaneous wide band and narrow band inputs, wide band random and swept sine inputs, wide band random and deterministic inputs, wide band and swept narrow band inputs, swept narrow band or swept sine wave.
Multi Input PSD Analysis for Multi-Channel, Multi-Event Loading
CAEfatigue offers all the input / output options mentioned for Base Shake loading plus the ability to use multiple random input PSDs (and cross PSDs) with mean offsets; i.e., data from a test rig with multiple events and multiple channels per event plus a mean offset. This module offers random response and S-N and/or E-N fatigue results generated from the multiple simultaneous correlated load inputs, with any number of DOF’s, inputs, events and frequencies. Coupled with advanced random analysis, CF becomes a powerful tool for understanding output results for displacement, velocity, acceleration, force, stress, strain and fatigue (damage / life).
Conditioning and Conversion of Time Signals to PSDs
For those who only have multi-channel, multi-event time histories, CAEfatigue offers a separate toolset called TIME2PSD. Historical loads conditioning procedures involve a series of user options that are hard for a typical engineer or designer to implement. Some of these have now been automated in the CF TIME2PSD approach. Window length (FFT buffer size), window overlap, and initial deletion of non-relevant parts of the signal can all be done automatically. The toolset provides a way to correctly eliminate sections of the time history that do not contribute to the damage. Conditioning is vital to ensure the damage from the time history is correctly transferred to the Power Spectral Density (PSD). The toolset also converts multi-input time histories to a PSD matrix that organizes, labels and tracks the PSDs to correctly account for cross correlation effects. An option also exists to switch on or off, the correlation terms to evaluate the influence on damage. The connections with solver subcase ID’s are automatically dealt with so the user does not have to take extra time managing the data.
For general and product specific platform support, please visit our Platform Support page.
Base Shake PSD Analysis plus Mean Loads plus Deterministic Loading
CAEfatigue is designed to provide the user with both the random response results and the fatigue results from a structure undergoing loading input from a single random PSD with or without additional loading from deterministic inputs and mean offsets. This package allows the User to do Random Analysis only. Response outputs includes mean stress, RMS stress or strain, mean stress plus RMS stress or strain, moments, zero crossings, peaks per second and irregularity factor.
The loading inputs needed for CF can come from Optistruct, Nastran, Ansys or Abaqus generated from (virtually) any size model. Examples of inputs are simultaneous wide band and narrow band inputs, wide band random and swept sine inputs, wide band random and deterministic inputs, wide band and swept narrow band inputs, swept narrow band or swept sine wave.
Multi Input PSD Analysis for Multi-Channel, Multi-Event Loading
CAEfatigue offers all the input / output options mentioned for Base Shake loading plus the ability to use multiple random input PSDs (and cross PSDs) with mean offsets; i.e., data from a test rig with multiple events and multiple channels per event plus a mean offset. This module offers random response outputs generated from multiple simultaneous correlated load inputs, with any number of DOF’s, inputs, events and frequencies. These advanced random output makes CF a powerful tool for understanding results for displacement, velocity, acceleration, force, stress and strain.
Conditioning and Conversion of Time Signals to PSDs
For those who only have multi-channel, multi-event time histories, CAEfatigue offers a separate toolset called TIME2PSD. Historical loads conditioning procedures involve a series of user options that are hard for a typical engineer or designer to implement. Some of these have now been automated in the CF TIME2PSD approach. Window length (FFT buffer size), window overlap, and initial deletion of non-relevant parts of the signal can all be done automatically. The toolset provides a way to correctly eliminate sections of the time history that do not contribute to the damage. Conditioning is vital to ensure the damage from the time history is correctly transferred to the Power Spectral Density (PSD). The toolset also converts multi-input time histories to a PSD matrix that organizes, labels and tracks the PSDs to correctly account for cross correlation effects. An option also exists to switch on or off, the correlation terms to evaluate the influence on random analysis outputs. The connections with solver subcase ID’s are automatically dealt with so the user does not have to take extra time managing the data.
For general and product specific platform support, please visit our Platform Support page.
Time Domain Fatigue Analysis
CAEfatigue is designed to provide basic fatigue analysis tools for the linear static superposition approach, the modal participation factor approach and the direct stress recovery method. This TIME package is intended to provide a vast improvement in the analysis process for conventional static superposition analysis, modal participation factor (dynamic transient) analysis and direct stress recovery analysis. The TIME package uses state of the art software development tools and algorithms to deliver a fatigue solver with superior speed and accuracy. Coupling time domain tools with frequency domain tools provides Customers with a complete time and frequency domain analysis package that surpasses the performance and accuracy needs of our users.
Load Scheduler Toolset
CAEfatigue provide a Load Scheduler toolset that allows the User to create unique time based loading profiles from a simple deterministic time signal channel to complicated multi-event, multi-channel loading sequences. Existing RPC, CSV, DAC files can be manipulated / augmented and exported as unique loading event sets.
For general and product specific platform support, please visit our Platform Support page.
Statistical Energy Analysis approach offers an efficient solution to study noise and vibration propagation inside large systems at mid- and high-frequencies. The global system is reduced to a set of coupled subsystems and energy balance between them is computed.
From FEA to SEA
Building a SEA model with classical approaches usually requires an access to experimental data or analytical expressions limiting the range of geometrical objects that could be handled. With Actran SEA module and its Virtual SEA approach, CAE engineers can use their existing Finite Elements vibro-acoustic models (mode shape and eigen values) to create a SEA model. Based on automatic or user-defined subsystems definition, SEA parameters are efficiently extracted from the Finite Elements model to perform sound and vibration analysis at mid- and high frequencies together with transfer path analysis regardless the availability of SEA expertise or experimental-based information. Combined with a unique frequency extrapolation method, the Actran SEA module offers the possibility to extend the frequency range validity of existing vibro-acoustic finite elements models to high frequency analysis.
Complete system vibro-acoustic performances can be predicted thanks to realistic physical excitation including spatially and frequency dependent distributed load and pressure as well as diffuse sound field and turbulent boundary layer.
![]() |
Learn more about Actran products and services at www.fft.be |
Use Actran TM to analyze the sound radiated by turbomachinery and to optimize the related acoustic treatments. One of the challenges of acoustic CAE methods is handling of large models associated to high wave number and to large geometrical size and complexity. Actran TM provides efficient solver technologies to address this problem, which includes advanced parallel processing.
In addition to studying aircraft engines, Actran TM can be used to analyze inlet and outlet liners for helicopter turbines, environmental control systems, and auxiliary power units, and for non-aerospace applications like computer cooling systems. Actran TM can be complemented by Actran DGM to solve problems involving complex shear layers and flow gradients occurring at engine exhaust.
![]() |
Learn more about Actran products and services at www.fft.be |
Actran DGM solves the linearized Euler equations using discontinuous finite elements and is used for predicting the noise propagation in complex physical conditions. It is particularly well suited to solving aero-acoustic problems at the exhaust of a double flux aero-engine, including effects such as propagation through strong shear layers, high temperature gradients and non-homentropic mean flows.
Actran DGM uses an unstructured mesh method, and is not constrained by standard limitations of Finite Difference Method. As the order of the elements is automatically adapted, the mesh can be non-homogeneous, with a combination of very small and large elements in the same mesh, without any performance degradation.
![]() |
Learn more about Actran products and services at www.fft.be |
Actran VI is the new graphical user interface specifically designed for pre- and post-processing vibro- and aero-acoustic analyses of all Actran modules.
Including an Actran input file reader to check or modify input files generated by other tools, Actran VI supports several mesh formats (Nastran BDF, ANSYS RST and CDB, Actran DAT and NFF, I-DEAS UNV, Patran Neutral Format) as input for creating Actran input files.
Its various integrated pre-processing tools ease the creation and editing of Actran models. It is easy to visualize specific Actran model features (such as modal basis, sources or infinite elements coordinate system), to specify the projection parameters between incompatible meshes, to insert additional entities (e.g. control points) or to visualize the specified boundary conditions. Additionally, it is also possible to define analysis templates (with or without mesh) to ease the creation of recurrent analyses.
The post-processing tool supports different results formats, such as OP2, UNV, NFF, RST, HDF and punch files. It contains different visualization modules, such as contour plots (maps), iso-surfaces, vectors or deformations, which can be freely combined and controlled using different filters. Synchronized viewports makes it easy to compare results at different frequencies, phases, times or related to different load case.
An animation module dedicated to complex harmonic results coupled with video export capabilities is also included.
Actran VI includes the PLTViewer and WaterfallViewer modules for easily displaying and handling frequency response functions, in single or multiple loadcases.
![]() |
Learn more about Actran products and services at www.fft.be |